Search results for " biopolymers"

showing 10 items of 14 documents

Active packaging films with natural antioxidants to be used in meat industry: A review.

2018

Spoilage of meat products during processing, distribution and exposure in the markets have an important negative impact on meat industry from an economic point of view. Two of the main problems of meat and products during processing and subsequent storage are lipid oxidation and deterioration due to microorganism growth. In this context, several packaging alternatives have been developed by meat industry in order to limit these losses and to extend the meat products´ shelf life. Over the last years, the use of active packaging has been proposed as an alternative to traditional packaging. The principle of active packaging, particularly antioxidant active packaging, consists of including acti…

MeatMeat packing industryActive packagingContext (language use)Shelf lifeAntioxidants0404 agricultural biotechnologyLipid oxidationMeat spoilageFood PreservationAnimalsMeat-Packing Industry2. Zero hungerbusiness.industryFood Packagingfood and beverages04 agricultural and veterinary sciences040401 food scienceAntioxidant active packaging ; Biopolymers ; Plant extracts ; Essential oils ; Film production ; Meat packagingMeat ProductsCosts and Cost AnalysisFood MicrobiologyBiochemical engineeringLipid PeroxidationbusinessFood ScienceFood research international (Ottawa, Ont.)
researchProduct

Preliminary evaluation of biopolymers production by mixed microbial culture from citrus wastewater in a MBR system using respirometric techniques

2021

Abstract This preliminary study was aimed at evaluating the feasibility to produce biopolymers (BP) from citrus wastewater by mixed microbial culture in an anaerobic/aerobic membrane bioreactor (A/O-MBR). The activated sludge of the A/O-MBR was successfully enriched in microorganisms having a good capacity in producing intracellular biopolymers. The production of BP was found to be about 0.55 mgCOD mgCOD−1 using pure acetate at a concentration of 1000 mgCOD L−1. When using fermented wastewater, the conversion of acetate into BP product was 0.56 mgCOD mgCOD−1 in the test performed with C/N equal to 1000:1, whereas it was only 0.12 mgCOD mgCOD−1 in the test with C/N of 100:5. The results achi…

Microbiological cultureMixed microbial cultureMicroorganismBiomass02 engineering and technology010501 environmental sciencesRaw materialMembrane bioreactor01 natural sciences020401 chemical engineeringIntracellular biopolymersSettore CHIM/01 - Chimica Analitica0204 chemical engineeringSafety Risk Reliability and QualityWaste Management and DisposalCitrus wastewater0105 earth and related environmental sciencesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryProcess Chemistry and TechnologyPulp and paper industryActivated sludgeWastewaterMembrane bioreactorFermentationBiotechnologyJournal of Water Process Engineering
researchProduct

Biopolymer Recovery from Aerobic Granular Sludge and Conventional Flocculent Sludge in Treating Industrial Wastewater: Preliminary Analysis of Differ…

2022

The recovery of biopolymers from sewage sludge could be a crucial step in implementing circular economy principles in wastewater treatment plants (WWTP). In this frame, the present study was aimed at evaluating the simultaneous production of polyhydroxyalkanoates (PHA) and extracellular polymeric substances (EPS) obtainable from the treatment of agro-industrial wastewater. Two biological enrichment systems, aerobic granular sludge (AGS) and a conventional activated sludge operating as a sequencing batch reactor (SBR), were monitored for 204 and 186 days, respectively. The maximum biopolymers accumulation capacity was close to 0.60 mgPHA-EPS gVSS−1 in the AGS when operating at 3 kgCODm…

wastewater treatmentsewage sludgeSettore ICAR/03 - Ingegneria Sanitaria-Ambientalebiopolymercircular economyaerobic granular sludge; biopolymers; circular economy; extracellular polymeric substances; polyhydroxyalkanoates; sewage sludge; wastewater treatmentGeography Planning and Developmentpolyhydroxyalkanoateaerobic granular sludgeAquatic Scienceextracellular polymeric substanceBiochemistryWater Science and TechnologyWater
researchProduct

Sustainable Materials Containing Biochar Particles: A Review

2023

The conversion of polymer waste, food waste, and biomasses through thermochemical decomposition to fuels, syngas, and solid phase, named char/biochar particles, gives a second life to these waste materials, and this process has been widely investigated in the last two decades. The main thermochemical decomposition processes that have been explored are slow, fast, and flash pyrolysis, torrefaction, gasification, and hydrothermal liquefaction, which produce char/biochar particles that differ in their chemical and physical properties, i.e., their carbon-content, CHNOS compositions, porosity, and adsorption ability. Currently, the main proposed applications of the char/biochar particles are in …

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymers and PlasticsGeneral Chemistryasphalts biochar particles biopolymers polymers sustainable materialsPolymers
researchProduct

ETICHETTE INTELLIGENTI PER LA RILEVAZIONE VISIVA DEL DETERIORAMENTO DEI PRODOTTI ALIMENTARI

2015

smart label food packaging natural products biopolymers
researchProduct

Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products

2021

Biomass is defined as organic matter from living organisms represented in all kingdoms. It is recognized to be an excellent source of proteins, polysaccharides and lipids and, as such, embodies a tailored feedstock for new products and processes to apply in green industries. The industrial processes focused on the valorization of terrestrial biomass are well established, but marine sources still represent an untapped resource. Oceans and seas occupy over 70% of the Earth’s surface and are used intensively in worldwide economies through the fishery industry, as logistical routes, for mining ores and exploitation of fossil fuels, among others. All these activities produce waste. The other sou…

Resource (biology)Sciencemarine biomassBiomassOcean Engineering02 engineering and technologyQH1-199.5010501 environmental sciencesAquatic ScienceRaw materialOceanographybeach wrack01 natural sciencesWrack12. Responsible consumptionIndustrial Biotechnologyblue biotechnologyIndustriell bioteknikEnvironmental protectionmarine wastebeach wrack; blue biotechnology; circular economy; marine biomass; marine biopolymers; marine industrial by-products; marine waste; waste valorizationOrganic matterMarine ecosystem14. Life underwatermarine waste ; marine industrial by-products ; marine biopolymers ; marine biomass ; waste valorization ; circular economy ; blue biotechnology ; beach wrack0105 earth and related environmental sciencesWater Science and Technology2. Zero hungerchemistry.chemical_classificationGlobal and Planetary Changebusiness.industryCircular economyQFossil fuelcircular economyGeneral. Including nature conservation geographical distributionmarine biopolymersmarine industrial by-products021001 nanoscience & nanotechnology6. Clean waterwaste valorizationchemistry13. Climate actionEnvironmental science0210 nano-technologybusiness
researchProduct

Hedysarum coronarium-Based Green Composites Prepared by Compression Molding and Fused Deposition Modeling

2022

In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from 75 μm to 300 μm. Four formulations have been produced by compression molding (CM) and fused deposition modeling (FDM) by adding 5%, 10%, 15% and 20% of HC to MB. The influence of filler content on the processability was tested, and rheological, morphological and mechanical properties of composites were also assessed. Through CM, it was possible to obtain easily homogeneous samples with all filler amounts.…

biocompositesTechnologyMicroscopyQC120-168.85FDMgreen compositesTQH201-278.5biopolymers3D printingnatural fillerEngineering (General). Civil engineering (General)ArticleMater-BiTK1-9971Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiDescriptive and experimental mechanicsgreen composites; biocomposites; FDM; biopolymers; Mater-Bi; natural filler; additive manufacturing; 3D printingGeneral Materials ScienceElectrical engineering. Electronics. Nuclear engineeringTA1-2040additive manufacturing3D printing Additive manufacturing Biocomposites Biopolymers FDM Green composites Natural filler Mater-BiMaterials; Volume 15; Issue 2; Pages: 465
researchProduct

Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films

2014

Selective modification of the inner surface of halloysite nanotubes (HNTs) by the cycloaddition of azides and alkynes (click reaction) was successfully achieved. Fourier transform infrared spectroscopy and thermogravimetry confirmed that the modification involved only the HNT cavity. Morphological investigations evidenced that the functionalized nanotubes formed microfibers and clusters in the micrometer range. By means of the casting method, these nanomaterials were dispersed into biopolymeric matrixes (chitosan and hydroxypropyl cellulose) with the aim of obtaining nanocomposite films with tunable properties from the physicochemical viewpoint. For comparison purposes, we also characterize…

NanocompositeMaterials scienceHydroxypropyl celluloseNanotechnologySettore CHIM/06 - Chimica Organicaengineering.materialHalloysiteSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsNanomaterialsThermogravimetrychemistry.chemical_compoundGeneral EnergychemistryClick chemistryengineeringSurface modificationhalloysite biopolymers click-reactionPhysical and Theoretical ChemistryFourier transform infrared spectroscopySettore CHIM/02 - Chimica Fisica
researchProduct

Polysaccharide-based ionogels as sustainable antioxidant and antimicrobial materials

Supramolecular gels ionic liquids biopolymers antioxidant antimicrobilaSettore CHIM/06 - Chimica OrganicaSettore BIO/19 - Microbiologia Generale
researchProduct

Green Composites Based on Hedysarum coronarium with Outstanding FDM Printability and Mechanical Performance

2022

The addition of natural scraps to biodegradable polymers has gained particular interest in recent years, allowing reducing environmental pollution related to traditional plastic. In this work, new composites were fabricated by adding 10% or 20% of Hedysarum coronarium (HC) flour to Poly (lactic acid) (PLA). The two formulations were first produced by twin screw extrusion and the obtained filaments were then employed for the fabrication of composites, either for compression molding (CM) or by fused deposition modeling (FDM), and characterized from a morphological and mechanical point of view. Through FDM it was possible to achieve dense structures with good wettability of the filler that, on…

biocompositesFDMPolymers and Plastics<i>Hedysarum coronarium</i>; sulla; polylactic acid; FDM; 3D printing; biocomposites; composites; mechanical properties; biopolymers; natural fillerbiopolymers3D printingnatural fillerGeneral Chemistrymechanical propertiesHedysarum coronariumpolylactic acidcompositessullaPolymers; Volume 14; Issue 6; Pages: 1198
researchProduct